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Proofs of Propositions 1 and 2
The assumptions outlined in the main text for the separable agricultural household produce the
following model and Lagrangian.
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The resulting first order conditions and bordered Hessian with exogenous differential of inter-
est for the separable model are as follows.
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We state that dAs/dPs =
fs(Pogoo�Coo)⇥

(Cso)2�(Pogoo�Coo)(Ps fss�Css)
⇤ > 0, which is a standard result.

Proof of Proposition 1A.

First we observe the following results for dAo
dPs

below, which follows since the sign of the de-
nominator is negative by theorem (i.e. sign(|H|) = (�1)n, where n = 3 is the number of choice
variables in both models (1) and (3), thus sign(|H|) = (�1)3 < 0, see Simon, Blume et al. 1994
theorem 19.6 or 19.8, or Chiang and Wainwright 2005 pg. 363).
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Now we use the expressions for dAs
dPs
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, for the remaining proposition 1 results.
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QED.

Proof of Proposition 1B.

Using the proceeding results for dAs
dPs

and dAo
dPs

we find the expression and conditions for dT
dPs

.
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hT s > 0 () (i) Cso < 0 (i.e. compliments), or
(ii) Cso > 0 and Cso < |Pogoo �Coo| (i.e. substitutes)

QED.

Moving on to propositions 3, 4, and 5, the assumptions outlined in the main text produce the
following model and Lagrangian.
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The first order conditions and bordered Hessian produced by the non-separable model) are then
the following.
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Proof of Proposition 2A.

We first show the result and conditions for dAs
dPs

.

dAs

dPs
=

(�1)1+5(�
�

f (As)�Fs
�
)|H15|+(�1)3+5(�(�l ))|H35|+(�1)5+5(�l fs)|H55|

|H|

=
�MSsl

�
Pogoo �Coo

�h
(2Ps fs �Cs)

i

|H| , MSs being staple marketable surplus

=
�MSs

(2Ps fs �Cs)

Therefore
dAs

dPs
> 0 () the household is a net-buyer in the staple (i.e. since by FOC As, Ps fs >Cs).

Using the expressions for dAs
dPs

and dT
dPs

from model (3), we arrive at the following result and
conditions for drs

dPs
.
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(iii) net-seller, Cso > 0 (i.e. substitutes), and |Ao(Pogoo �Coo)|< |AsCso|

QED.

Proof of Proposition 2B.

We first show the result and conditions for dAo
dPs

.
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l (Pogoo �Coo)(2Ps fs �Cs)2 MSs being staple marketable surplus

=
�MSsCso

(Pogoo �Coo)(2Ps fs �Cs)

Therefore
dAo

dPs
> 0 () (i) the household is net-buyer in the staple and Cso < 0 (i.e. compliments), or

(ii) the household is net-seller in the staple and Cso > 0 (i.e. substitutes)

Using the expressions for dAo
dPs

and dT
dPs

from model (3) we arrive at the following result and
conditions for dro

dPs
.
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(ii) household is net-buyer, Cso < 0 (i.e. compliments), and |Ao(Pogoo �Coo)|< |AsCso|.

QED.

Proof of Proposition 2C.

Using the prior expression derived above for dAs
dPs

and dAo
dPs

we find the following result and
conditions for dT

dPs
.

dT
dPs

=
dAs

dPs
+

dAo

dPs
=

�MSsl
�
Pogoo �Coo

�h
(2Ps fs �Cs)

i

|H| +
MSs(�lCso)(2Ps fs �Cs)

|H|

=
�MSsl (2Ps fs �Cs)

�
Pogoo �Coo +Cso)

l (Pogoo �Coo)(2Ps fs �Cs)2

=
�MSs

�
Pogoo �Coo +Cso)

(Pogoo �Coo)(2Ps fs �Cs)
dT
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> 0 () (i) household is a net-buyer and Cso < 0 (i.e. compliments), or

(ii) household is a net-buyer, Cso > 0 (i.e. substitutes), and |Pogoo �Coo|> |Cso|, or
(iii) household is a net-seller, Cso > 0 (i.e. substitutes), and |Pogoo �Coo|< |Cso|

QED.

Discussion of Household-Level Econometric Models
As outlined in our main text, the nature of our household econometric models and corresponding
data force some degree of compromise with estimators. If we had local price data, at say the village
level, sufficient to provide contemporaneous and/or one-year lags of rice price moments to match
with production data from 2004, 2007, and 2008 CSES rounds, then it would be possible to fully
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estimate the two-stage least squares model below,

Pl,t = q1Zl,t +D0
l,t� j

q2 +X 0
i,l,t

q3 +W 0
l,t� j

q4 +Ll +Tt +ul,t (5)

Ai,c,s,l,t+1 = g1cPl,t +D0
l,t� j

g2 +X 0
i,l,t

g3 +W 0
l,t� j

g4 +Ll +Tt + ei,c,s,l,t+1 . (6)

All variables in equations (5) and (6) are the same as the companion reduced-form with the ex-
ception of Pl,t and cPl,t , which are the observed and predicted price variation, and ul,t and ei,c,s,l,t+1
which capture the error terms for the first and second stages. Unfortunately, the time-step of avail-
able recall-based production data forces one to drop most pre-price-shock observations because
local price data is not available at a lagged or contemporaneous time-step. Specifically, in order to
merge contemporaneous or lagged, local price data with household production data, a CSES sur-
vey round in the preceding year is needed. Since there were no CSES surveys in 2003, 2005 and
2006, local price data is not available to merge household production data from 2004 and 2007 –
hence missing data for the endogenous variable of interest forces the researcher to omit data from
these survey rounds to estimate respective instrumental variables specifications We operationalize
this model with the district-level price data employed in our deforestation specifications.

By nature of the area-share data, the above set-up requires either estimation as a linear prob-
ability model, or a linearized regression model using an appropriate link function. A potentially
significant caveat to either approach is less than ideal fidelity to the underlying data generating
process – especially if there is sizable mass at either 0 or 1. If there is significant mass at either
boundary point, the boundary observations must be dropped or censored with an arbitrary constant
to ensure the data are bounded in (0,1) and not [0,1]. In our setting, substantial mass is observed
at boundaries resulting in a J-shaped distribution for rice and cash crop shares, thus implying
non-trivial data censoring to operationalize standard fractional data estimators and/or a linearized
approach with an appropriate link function (e.g. logit).

The alternative two-stage specification outlined below makes this non-linear reality more ex-
plicit via function G(·),

Pl,t = q1Zl,t +D0
l,t� j

q2 +X 0
i,l,t

q3 +W 0
l,t� j

q4 +Ll +Tt +ul,t (7)

Ai,c,s,l,t+1 = G
�
g1cPl,t +D0

l,t� j
g2 +X 0

i,l,t
g3 +W 0

l,t� j
g4 +Ll +Tt + ei,c,s,l,t+1

�
. (8)

Function G(·) is an unknown function that ensures the response variable stays within the unit
interval, though the matter is theoretically deeper than just a mechanical relationship. As Ramalho,
Ramalho, and Murteira (2011) point out, there are deeper underlying issues having to do with
whether or not the model of interest is really a one- or two-part decision model (e.g. a binary
discrete choice and continuous extensive margin choice). Our approach, as with our theoretical
model, abstracts from these choices. Econometrically this could imply model mis-specification.
In a footnote in our main text, we point out the there is some empirical evidence from Ramalho,
Ramalho, and Murteira (2011) that linear approximations to these data generating processes can
yield useful information in that they can correctly identify signs and approximate magnitudes,
even if the underlying model being estimated represents a mis-specification of the data generating
process.

Another estimation alternative with fractional data are the GMM estimators developed by
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Ramalho and Ramalho (2017) and Ramalho, Ramalho, and Coelho (2018), referred to as expo-
nential fractional-regression models. The starting point for operationalizing these estimators is,
yit = G

⇥
exp

�
xitb +ai + eit

�⇤
(equation 4 in Ramalho, Ramalho, and Coelho 2018). A key advan-

tage of some of these estimators is that they reduce the need to trim boundary observations (i.e.
they account for one of the boundaries), but many of them also permit modeling endogeneity with
instruments and they also permit differencing-out of incidental parameters for fixed effects.

Although these estimators seem to provide particular advantages with true panel data, with re-
peated cross-sections the gains are not as clear. The applicable estimator from Ramalho, Ramalho,
and Coelho (2018) is GMMp f e , which is a pooled version of GMMz developed by Ramalho and
Ramalho (2017). We undertook testing with GMMp f e , by implementing the GMMz option in the
applicable R package frmhet because the frmpd package only implements GMMp f e for the version
of this estimator that requires true panel data. Unfortunately, we encountered many local minima
in our estimations, and computational challenges with the variance-covariance matrix required a
bootstrap to estimate standard errors. It should also be noted that in contrast to most of the esti-
mators pioneered by Ramalho, Ramalho, and Coelho (2018), GMMp f e for repeated cross-sectional
still requires trimming of boundary observations and it also requires estimating incidental param-
eters for fixed effects of interest because they cannot be differenced- or transformed-out.

In combination, this ended up being a very computationally intensive procedure, which for one
estimation, required first optimizing starting values with a random number generator to avoid local
minima (i.e. take the estimation with the lowest function value) all while estimating incidental
parameters, and then implementing this procedure N times to estimate standard errors via a block-
bootstrap that would sample with replacement down to the commune or district level. With at least
seven different dependent variables of interest, this is a very burdensome undertaking. If we had
suitable local price data for the entire set of cross-sections at, say, the commune or district level,
this undertaking might be worth the effort1.

With these complications and caveats in mind, we determined that the conservative and most
tractable approach is to focus on the reduced-form as it allows us to study the full set of pre- and
post-shock cross-sections and implement the available version of the two-stage least squares model
for qualitative comparison. Clearly we would have a more ideal scenario with true panel data as we
could leverage the state-of-the-art panel estimators from Ramalho, Ramalho, and Coelho (2018)
for fractional data. However, under the circumstances, and compared with comparable literature in
this space, we suggest that there is ample, novel value in implementing the models that we present
as they are the most well-suited to the data we have, especially given the empirical support found
in Ramalho, Ramalho, and Murteira (2011) for using linear or linearized models to identify signs
and approximate magnitudes.

1We do not think province-level price variation is terribly meaningful at the household level, but one could imple-
ment such a specification. However, one still has data gaps for the earlier cross-sections when trying to merge lags of
province level price variation with earlier cross-sections at the province level.
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Supplementary Figures and Tables

Aggregate Production Data and Producer Prices from FAO

Figure 1: Production value and quantity 1961-2016. Authors’ calculations using data from
Cambodia Forestry Administration (2010).
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Figure 2: Selection of annual producer prices in Cambodia, 1992 - 2012. Authors’ calculations
using data from Cambodia Forestry Administration (2010).
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Figure 3: Average Price of Wholesale Low-Quality Rice, 2006-2019. Authors’ calculations using
data from FAO (2020).
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Additional CSES Rice and Cash-Crop Price Data

Figure 4: Wet season paddy farm-gate price distribution (n = 18,621) (author’s calculations,
CSES data). All observations are deflated using CPI data from Cambodia NIS; centiles above
99% or below 1% are assigned to the mean.
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Figure 5: Selection of aggregate annual unit values and farm gate prices. Author’s calculations
using CSES data.
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Household Summary Statistics and Approximate NBR Densities
Figure 6: Household (hh.) CSES summary statistics 2004, 2007-2013.

Variable name All Non-ag Ag Number of obs.

hh. size 4.76 4.63 4.83 (45969, 16202, 29767)
(1.93) (1.98) (1.9)

hh. size above 15 yrs. 3.23 3.26 3.22 (45968, 16201, 29767)
(1.52) (1.62) (1.46)

female head hh. 0.223 0.268 0.198 (45969, 16202, 29767)
(0.416) (0.443) (0.399)

years educ. head hh. 4.98 6.22 4.3 (45900, 16187, 29713)
(4.04) (4.53) (3.58)

male share above 15 yrs. 0.451 0.444 0.455 (45967, 16200, 29767)
(0.191) (0.203) (0.185)

weekly hrs. firewood prep 3.36 1.55 4.35 (45968, 16201, 29767)
(5.55) (4.21) (5.94)

hh. dietary diversity score 9.92 10.6 9.54 (45964, 16200, 29764)
(2.35) (2.38) (2.25)

total weeks starving 0.974 0.768 1.08 (42420, 14764, 27656)
(4.03) (3.83) (4.12)

approx. net rice sales 34400 -899 54100 (25363, 9056, 16307)
(674000) (797000) (594000)

approx. NBR -0.00303 -0.0549 0.0258 (25363, 9056, 16307)
(0.183) (0.119) (0.205)

Engel value 0.802 0.807 0.8 (38214, 12731, 25483)
(0.0931) (0.0981) (0.0904)

rice share of food expnd. 0.217 0.102 0.275 (38214, 12731, 25483)
(0.178) (0.146) (0.164)

number of ag. plots 1.86 (NA, NA, 29767)
(1.08)

number of crops grown 1.42 (NA, NA, 27467)
(0.794)

hectares of ag. land 1.92 (NA, NA, 29767)
(35.8)

number plots irrigated rice 0.618 (NA, NA, 29767)
(0.942)

area share rice wet season 0.781 (NA, NA, 24722)
(0.353)

area share cash crops wet season 0.088 (NA, NA, 24722)
(0.261)

area share rice dry season 0.361 (NA, NA, 9533)
(0.426)

area share cash crops dry season 0.184 (NA, NA, 9533)
(0.345)

Note: Columns two through four present means and standard deviations for the entire sample (All), non-
agricultural (Non-ag), and agricultural (Ag) households. The final three columns present the correspond-
ing number of observations.
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Note about Approximate NBR construction:

Following Deaton (1989), NBR variable construction is as follows. For household i, surveyed
in month m, during year y,

NBRi,m,y =
⇥
(total ag. incomei,m,y)� (total value of rice consumptioni,m,y)

⇤
/(total incomei,m,y).

Since “total agricultural income month of survey” cannot be subset to rice-income only, the re-
sulting values overstate the value of rice production and understate the density of net-buyers in
rice (i.e. since, total ag. income � total rice ag. income). We do, however, set agricultural income
to zero for households who report not growing rice over the prior agricultural year to mitigate
potential for non-zero agricultural income for households that produce crops, but not rice.

Below we provide annual non-parametric densities for agricultural households by pooling all
households surveyed within a given year. 2004 data is not incorporated due to non-conformable
questions with later year surveys. In particular, while income from agriculture is separated from
income from forest related activities in later years of the CSES, in 2004 these respective income
categories are not separated in the data.

The general shape and distribution of the densities down below is robust to choice of kernel
and adaptive bandwidth selection method, with the exception of rule of thumb bandwidth (which
appears to over-smooth the underlying densities). Rule of thumb bandwidth is generally only
recommended for exploratory analysis (see Racine 2019 pg. 73).
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Figure 7: Non-parametric densities of approximate NBRs for agricultural households constructed
using diary and crop production data. Specifications are: Epanechnikov kernel (order 2); optimal
bandwidth via adaptive nearest-neighbor least squares cross-validation; and 95% bootstrapped
confidence intervals (n= 1000, iid resample). The y-axis represents density, the x-axis is centered
at zero (red line) spanning [�0.5,0.5] (a truncation of the theoretical [�1,1] NBR support).
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Spatial Plots of Cambodia, Deforestation, and Rice Prices

Figure 8: Map of Cambodia’s administrative boundaries, economic land concession boundaries,
and locations of Phnom Pehn and Sihanoukville deep sea port.

Below are several spatial plots showing deforestation and rice price variation. Note that CSES
consumption module data were not gathered in 2012-2013, hence the associated plot for low-
quality rice unit values extends to 2011 while our wet season paddy data extends through 2013.
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Figure 9: District-level average low-quality rice unit values by year. Values depicted are in riels
(real). Grey districts were not surveyed or have missing data. Unit values for broken rice were
obtained from CSES consumption diary. Extreme outliers (i.e. 99.9% or above, or 0.1% or below)
were assigned to their respective annual mean.
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Figure 10: District-level average wet season paddy price by year. Values depicted are in riels
(real). Grey districts were not surveyed or have missing data. Wet season paddy prices were
obtained from CSES crop production data (section B). Extreme outliers (i.e. 99.9% or above, or
0.1% or below) were assigned to their respective annual mean.
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Figure 11: District-level non-ELC deforestation by year in hectares. Grey districts were not
observed in CSES data for given year�1. Deforestation data comes from Hansen et al. (2013)
and ELC shapefile used to mask data in ELC areas comes from ODC (2019).
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Figure 12: District-level ELC deforestation by year in hectares. Grey districts were not observed
in CSES data for given year�1. Deforestation data comes from Hansen et al. (2013) and ELC
shapefile used to mask data in ELC areas comes from ODC (2019).

Regression Results for IV Correlation with Other Prices
Here we provide two figures showing point estimates and p-values for instrument Z when regressed
on unit values or farm gate prices for major cash crops, firewood, and charcoal. Out of 60 farm
gate price-focused regressions, 33% show Z is significant at 10% or less; 70% of this 33% are
from “short” regressions with trends, Z, and location fixed effects (signs are largely negative, with
an average of n = 163.8 observations per regression). Of the 33 cash-crop unit value-focused
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regressions, 30% show Z is significant at 10% or less; 81% of this 30% are “short” regressions
with or without fixed effects (signs are largely negative, with an average of n = 560.9 observations
per regression). Among the unit value regression tests, only mango and coconut unit values show
signs of strong correlation with our instrument; cassava shows no correlation. Robustness checks
in our deforestation specifications show that our results do not change when any of the price series
with high correlation with our instruments are included as an instrumented endogenous regressor.
Overall, these findings indicate that our instrument is not correlated with other commodity prices
in any strong and meaningful way the changes our main results.
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Figure 13: Point estimates of district-level regressions of various mean unit value cash crop
prices in period t on contemporaneous instrument Z (interaction of centroid road distances to
Cambodia’s deep sea port with mean US based international rice price); points estimates are on
the x-axis, corresponding p-values are on the y-axis; horizontal line is plotted at y = 0.10, vertical
at 0. Far bottom right plot has low-quality rice unit values as the dependent variable for reference.
All regressions include district level fixed effects and province and district level clustered
standard errors: n = 33 total cash-crop focused regressions, 30% of which are significant at 10%
or less (81% of these being ‘short’ regressions with and without district level fixed effects);
overall mean of point estimate on Z is �1.78.
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Figure 14: Point estimates of district-level regressions of various mean farm gate cash crop prices
in period t on contemporaneous instrument Z (interaction of centroid road distances to
Cambodia’s deep sea port with mean US based international rice price); points estimates are on
the x-axis, corresponding p-values are on the y-axis; horizontal line is plotted at y = 0.10, vertical
at 0. Plots vary in having eight or four points estimates, capturing more or less adjustment,
respectively, to censoring dependent variable outliers (light censoring to raw data); more points
implies greater range of dependent variable adjustment. All regressions include district level fixed
effects and province and district clustered standard errors: n = 60 total regressions, 33% of which
are significant at 10% or less (70% of these being ‘short’ regressions); overall mean of point
estimate on Z is �7.9.
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Supplementary Regression Results for Deforestation Response

Figure 15: Side by side comparison of point estimates of the arcsinh of district-level mean rice
prices in t regressed on arcsinh(district-level non-ELC hectares deforested) in t +1: top panel
shows point estimates of arcsinh(low-quality rice unit values) (N = 786; t 2 (2004,2007�2013);
172 districts, 24 provinces); bottom panel shows point estimates of arcsinh(wet season paddy)
(N = 988; t 2 (2004,2007�2013); 179 districts, 24 provinces).

25



Figure 16: Identical side by side comparison of point estimates to the immediately preceding
figure 15, except for columns 5 and 12, which are omitted from the main text for obvious scale
reasons. Columns 5 shows the result of an IV specification without any fixed effects. Column 12
demonstrates what happens when year fixed effects are included.
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Figure 17: Side by side comparison of point estimates of the arcsinh of district-level mean rice
prices in t regressed on arcsinh(district-level ELC hectares deforested) in t +1: top panel shows
point estimates of arcsinh(low-quality rice unit values) (N = 786; t 2 (2004,2007�2013); 172
districts, 24 provinces); bottom panel shows point estimates of arcsinh(wet season paddy)
(N = 988; t 2 (2004,2007�2013); 179 districts, 24 provinces).
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Figure 18: Identical side by side comparison of point estimates to the immediately preceding
figure 17, except for columns 5 and 12, which are omitted from the main text for obvious scale
reasons. Columns 5 shows the result of an IV specification without any fixed effects. Column 12
demonstrates what happens when year fixed effects are included.
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Figure 19: Side by side comparison of point estimates of the arcsinh of district-level rice price
standard deviation (sd) in t regressed on arcsinh(district-level non-ELC hectares deforested) in
t +1: top panel shows point estimates of arcsinh(sd low-quality rice unit values) (N = 755;
t 2 (2004,2007�2013); 172 districts, 24 provinces); bottom panel shows point estimates of
arcsinh(sd wet season paddy) (N = 810; t 2 (2004,2007�2013); 179 districts, 24 provinces).
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Figure 20: Identical side by side comparison of point estimates to the immediately preceding
figure 19, except for columns 5 and 12, which are omitted from the main text for obvious scale
reasons. Columns 5 shows the result of an IV specification without any fixed effects. Column 12
demonstrates what happens when year fixed effects are included.
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Figure 21: Side by side comparison of point estimates of the arcsinh of district-level rice price
standard deviation (sd) in t regressed on arcsinh(district-level non-ELC hectares deforested) in
t +1: top panel shows point estimates of arcsinh(sd low-quality rice unit values) (N = 755;
t 2 (2004,2007�2013); 172 districts, 24 provinces); bottom panel shows point estimates of
arcsinh(sd wet season paddy) (N = 810; t 2 (2004,2007�2013); 179 districts, 24 provinces).
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Figure 22: Identical side by side comparison of point estimates to the immediately preceding
figure 21, except for columns 5 and 12, which are omitted from the main text for obvious scale
reasons. Columns 5 shows the result of an IV specification without any fixed effects. Column 12
demonstrates what happens when year fixed effects are included.
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Table 1: District-level non-ELC deforestation in t +1 on district-level mean low-quality rice
unit-values in t. Instrument is the interaction between the average US-based international rice
price in dollars per kg and district-level centroid road distances to Cambodia’s deep sea port. N =
786 observations.

(1) (2) (3) (4)

linear trend -0.12 -1.15⇤⇤⇤ -0.21⇤ -0.42⇤⇤

(0.09) (0.28) (0.11) (0.15)
district trends -0.0000 0.0000 -0.0000 -0.0000

(0.0000) (0.0000) (0.0000) (0.0000)
arcsinh(ELC deforestation in t) 0.12⇤⇤ 0.12⇤ 0.11⇤ 0.12⇤⇤

(0.05) (0.06) (0.06) (0.06)
avg. wet season temp (c) in t 1.86⇤⇤⇤ -3.89⇤⇤⇤

(0.63) (0.95)
avg. wet season rainfall (mm) in t 0.005⇤ -0.002

(0.002) (0.002)
avg. dry season temp (c) in t -0.96⇤⇤⇤ 0.20

(0.26) (0.23)
avg. dry season rainfall (mm) in t 0.002 -0.04⇤⇤⇤

(0.005) (0.01)
2009-2011 dummy 3.96⇤⇤⇤ 1.38⇤⇤⇤

(0.83) (0.32)
avg. annual temp (c) in t 0.30 -0.74⇤⇤

(0.42) (0.31)
avg. annual rainfall (mm) in t 0.01⇤ 0.001

(0.005) (0.002)
arcsinh(avg.lq.rice.uvl in t) 4.49⇤⇤⇤ 4.59⇤⇤⇤ 6.65⇤⇤⇤ 3.06⇤⇤⇤

(1.35) (1.58) (1.99) (0.96)

FEs? D D D D
Clust. S.E.? P,D P,D P,D P,D
iv1stg. F 27 27 20 44
Adjusted R2 0.88 0.89 0.82 0.90

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table 2: District-level non-ELC deforestation in t +1 on district-level mean wet season paddy in
in t. Instrument is the interaction between the average US-based international rice price in dollars
per kg and district-level centroid road distances to Cambodia’s deep sea port. N = 988
observations.

(1) (2) (3) (4)

linear trend 0.07 0.14 -0.02 -0.05
(0.07) (0.11) (0.08) (0.09)

district trends -0.0000 -0.0000 -0.0000 -0.0000
(0.0000) (0.0000) (0.0000) (0.0000)

arcsinh(ELC deforestation in t) 0.17⇤⇤⇤ 0.18⇤⇤⇤ 0.14⇤⇤ 0.15⇤⇤⇤

(0.05) (0.05) (0.05) (0.05)
avg. wet season temp (c) in t 0.51 1.16

(0.34) (0.73)
avg. wet season rainfall (mm) in t 0.001 0.002

(0.001) (0.001)
avg. dry season temp (c) in t -0.37⇤⇤⇤ -0.57⇤⇤

(0.11) (0.22)
avg. dry season rainfall (mm) in t 0.01⇤⇤ 0.01⇤⇤⇤

(0.004) (0.004)
2009-2013 dummy -0.37 0.45⇤⇤

(0.32) (0.17)
avg. annual temp (c) in t -0.01 -0.17

(0.32) (0.30)
avg. annual rainfall (mm) in t 0.01 0.004

(0.003) (0.003)
arcsinh(avg.rice.wsp in t) 2.73⇤⇤ 3.07⇤⇤ 6.51⇤⇤⇤ 4.90⇤⇤⇤

(1.09) (1.12) (1.84) (1.22)

FEs? D D D D
Clust. S.E.? P,D P,D P,D P,D
iv1stg. F 30 24 25 44
Adjusted R2 0.88 0.87 0.78 0.83

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table 3: Sample regression specifications with year fixed effects.

(1) (2) (3) (4) (5) (6)

linear trend 0.19⇤⇤⇤ 0.10⇤⇤⇤ -1.15⇤⇤⇤ 0.14
(0.06) (0.04) (0.28) (0.11)

district trends -0.0002⇤⇤⇤ -0.0002⇤⇤⇤ -0.0000 -0.0003 0.0000 -0.0000
(0.0000) (0.0000) (0.0000) (0.001) (0.0000) (0.0000)

arcsinh(ELC deforest in t) 0.45⇤⇤⇤ 0.39⇤⇤⇤ 0.14⇤⇤⇤ 0.18 0.12⇤ 0.18⇤⇤⇤

(0.03) (0.03) (0.05) (0.51) (0.06) (0.05)
avg. wet season temp (c) in t -0.81⇤⇤⇤ -0.68⇤ -0.15 0.36 -3.89⇤⇤⇤ 1.16

(0.25) (0.37) (0.27) (34.27) (0.95) (0.73)
avg. wet season rainfall (mm) in t 0.001 0.003⇤⇤⇤ -0.002⇤⇤ -0.03 -0.002 0.002

(0.001) (0.001) (0.001) (0.09) (0.002) (0.001)
avg. dry season temp (c) in t -1.00⇤⇤⇤ -1.23⇤⇤⇤ -0.44⇤⇤⇤ -13.53 0.20 -0.57⇤⇤

(0.15) (0.28) (0.11) (39.68) (0.23) (0.22)
avg. dry season rainfall (mm) in t -0.02⇤⇤⇤ -0.03⇤⇤⇤ 0.0002 0.17 -0.04⇤⇤⇤ 0.01⇤⇤⇤

(0.004) (0.01) (0.003) (0.77) (0.01) (0.004)
2009-2011 dummy 3.96⇤⇤⇤

(0.83)
arcsinh(avg.lq.rice.uvl in t) -1.13⇤⇤ -1.76⇤⇤⇤ -0.17 116.63 4.59⇤⇤⇤

(0.47) (0.56) (0.31) (442.53) (1.58)
2009-2013 dummy -0.37

(0.32)
arcsinh(avg.rice.wsp in t) 3.07⇤⇤

(1.12)
Constant 63.16⇤⇤⇤

(6.44)

FEs? N N D D D D
year FEs? N Y N Y N N
Clust. SEs? N N N P,D P,D P,D
1st stage FR NA NA NA 0 27 24
Observations 786 786 786 786 786 988
Adjusted R2 0.52 0.54 0.91 -15.13 0.89 0.87

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table 4: Reduced form (column 1) and example specifications of first stage contrasting effects of including year fixed effects. N = 786
observations. The dependent variable is low quality rice unit values.

(1) (2) (3) (4) (5) (6)

linear trend 0.04207 0.04976⇤⇤⇤ 0.03658⇤⇤⇤ 0.12402⇤⇤⇤

(0.05428) (0.00611) (0.00646) (0.01844)
district trends -0.000002 -0.000002 -0.000005 0.000003 0.000003 0.000001

(0.00003) (0.000005) (0.000003) (0.000004) (0.000005) (0.000004)
arcsinh(ELC deforestation in t) 0.11974⇤⇤ -0.00626⇤⇤ -0.00509⇤ -0.00054 -0.00084 -0.00015

(0.05541) (0.00247) (0.00288) (0.00392) (0.00425) (0.00524)
avg. wet season temp (c) in t 0.28532 -0.06153 0.09059 -0.04006 -0.35054⇤⇤⇤ 0.14138

(0.18168) (0.05176) (0.05630) (0.28472) (0.04819) (0.09711)
avg. wet season rainfall (mm) in t 0.00006 -0.00004 0.00045⇤⇤⇤ 0.00020 -0.00104⇤⇤⇤ -0.00047⇤⇤⇤

(0.00097) (0.00015) (0.00009) (0.00028) (0.00017) (0.00013)
avg. dry season temp (c) in t -0.34446⇤ 0.03395 -0.08221⇤⇤ 0.11566 0.13697⇤⇤⇤ 0.03757⇤

(0.19371) (0.02717) (0.03721) (0.25952) (0.01747) (0.02157)
avg. dry season rainfall (mm) in t -0.00340 0.00080⇤⇤ -0.00145 -0.00154 -0.00128⇤⇤⇤ 0.00231⇤⇤

(0.00393) (0.00038) (0.00090) (0.00129) (0.00045) (0.00087)
Z 0.00384⇤⇤⇤ 0.00016 -0.00039⇤⇤ 0.00006 0.00085⇤⇤⇤ 0.00085⇤⇤⇤

(0.00095) (0.00012) (0.00016) (0.00024) (0.00016) (0.00016)
2009-2011 dummy -0.33708⇤⇤⇤

(0.06889)
Constant 8.79105⇤⇤⇤

(0.90132)

FEs? D N N D D D
Year FEs? N N Y Y N N
Clust. S.E.? P,D P,D P,D P,D P,D P,D
Adjusted R2 0.92 0.28 0.53 0.69 0.65 0.67

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table 5: Reduced form (column 1) and example specifications of first stage contrasting effects of including year fixed effects. N = 988
observations. The dependent variable is wet season paddy farm gate prices.

(1) (2) (3) (4) (5) (6)

linear trend 0.12334⇤ 0.03456⇤⇤⇤ 0.01875⇤⇤⇤ 0.00456
(0.06904) (0.00407) (0.00512) (0.00938)

district trends -0.00002 0.0000004 0.000001 0.000003 0.00001⇤ 0.00001⇤

(0.00004) (0.000003) (0.000002) (0.000003) (0.000003) (0.000004)
arcsinh(ELC deforestation in t) 0.18048⇤⇤⇤ -0.00606⇤⇤⇤ -0.00422⇤⇤ 0.00246 0.00203 0.00115

(0.05156) (0.00222) (0.00189) (0.00638) (0.00585) (0.00588)
avg. wet season temp (c) in t 0.07199 0.00250 0.04370 0.03610 -0.15904⇤⇤⇤ -0.27333⇤⇤

(0.19299) (0.02621) (0.03201) (0.20117) (0.05489) (0.10877)
avg. wet season rainfall (mm) in t -0.00033 0.00002 0.00036⇤⇤⇤ 0.00032 -0.00033⇤ -0.00050⇤

(0.00073) (0.00014) (0.00010) (0.00037) (0.00019) (0.00026)
avg. dry season temp (c) in t -0.23738⇤ -0.04146⇤⇤⇤ -0.03987⇤ -0.02400 0.05011⇤⇤ 0.08400⇤⇤

(0.12229) (0.01366) (0.02380) (0.09201) (0.01841) (0.03195)
avg. dry season rainfall (mm) in t 0.00115 -0.00130⇤⇤⇤ -0.00163⇤⇤⇤ -0.00139⇤ -0.00342⇤⇤⇤ -0.00372⇤⇤⇤

(0.00208) (0.00023) (0.00040) (0.00074) (0.00032) (0.00043)
Z 0.00264⇤⇤ -0.00027⇤⇤⇤ -0.00045⇤⇤⇤ 0.00011 0.00097⇤⇤⇤ 0.00091⇤⇤⇤

(0.00100) (0.00006) (0.00010) (0.00025) (0.00018) (0.00018)
2009-2013 dummy 0.06989

(0.04224)
Constant 8.52620⇤⇤⇤

(0.48363)

FEs? D N N D D D
Year FEs? N N Y Y N N
Clust. S.E.? P,D P,D P,D P,D P,D P,D
Adjusted R2 0.90 0.14 0.36 0.46 0.38 0.38

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Note on weather variation effects in the first stage:

In the above tables a variety of statistically significant relationships are exhibited between price
variation and contemporaneous prices. For mean prices in the first stage, generally negative and
significant effects of wet season temperature and dry and wet season rainfall are apparent, but
positive and significant effects effects of dry season temperature are also clear. For price variance,
somewhat weaker relationships with weather overall are observed, but some changes in sign with
dry season temperature and wet season rainfall being negative and wet season temperature and dry
season rainfall being positive2.

These weather covariate signs are noteworthy and can be rationalized to a good degree. First,
we expect that contemporaneous weather will have an effect on prices through expectations and
within-year yield impacts. Second, most rainfall in Cambodia is rain-fed, hence increased rain on
average should shift supply upward resulting in downward pressure on mean prices. Third, the
relevance of maximum and minimum temperatures to farm-level rice yield in Asia has been estab-
lished by Welch et al. (2010) who find that higher maximum temperatures (beneath a threshold of
35 degrees C) increase yield and higher minimum temperatures decrease yield. Our finding of a
negative coefficient on wet season average maximum temperature in the first stage for mean prices
is consistent with the expected response (i.e. prices decline with increased supply). The positive
sign on dry season temperature could relate to declining yields for the dry season crop, which could
put upward pressure on prices.

The fact that within season temperature and rainfall would have opposing effects on prices
variance, and that across seasons the signs would flip between rainfall and temperature respectively
is puzzle, which we have little existing information to aid interpretation.

Note on Correlation of Z with Mango, Coconut Unit Values, Other Prices:

The two tables below present our results to address the issue of possible correlation of our
primary instrument Z with mango and coconut unit values and potential for these price changes to
be driving our results. We instrument for low quality rice unit values, and either mango or coconut
unit values, with wet season average maximum temperature3 in t � 1 and our triple interaction
instrument Z. These models confirm our general results with significance at the 1% level.

Diagnostic tests for instrumental variable models with multiple endogenous variables are not
well developed, particularly for nonhomeskedastic settings. To assess instrument strength we fol-
low Sanderson and Windmeijer (2016) who develop conditional F statistics, Fi| j, for each first
stage conditional on the other first stages4 , which we compare with standard robust F statistics.

2First stage results for price variance are omitted from the appendix but can be provided upon request.
3Welch et al. (2010) find that higher maximum temperatures (beneath a threshold of 35 degrees C) increase yield

and higher minimum temperatures decrease yield. Caution is needed in extrapolating farm-level results to aggregate
relationships. Nevertheless, our finding of a negative coefficient on wet season average maximum temperature in t �1
in the first stage is consistent with the expected response (i.e. prices decline with increased supply).

4Sanderson and Windmeijer (2016) build upon an analogous approach suggested by Angrist and Pischke (2009).
With two endogenous variables Sanderson and Windmeijer (2016) establish that Fi| j is equivalent to the Cragg and
Donald (1993) statistic, unless there is no correlation between predicted endogenous variables x̂ j and the other en-
dogenous variables (i.e. when d = 0 in d̂ = (X̂ 0

jX̂ j)�1X̂ 0
jXi), in which case Fi| j provides more information above the

Cragg and Donald (1993) (i.e. the Cragg and Donald (1993) statistic is global for all first stages and Fi| j is not).
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Instrument strength generally seems to remain in the safe range for our regressors of interest (i.e.
Frice|coconut and Frice|mango).

In homoskedastic settings Sanderson and Windmeijer (2016) establish that Stock and Yogo
(2005) critical values can be used to relate instrument strength Fi| j to bias and size distortions for
each first stage5. They also establish that in homoskedastic settings an endogenous coefficient of
interest can be consistently estimated if its respective first stage shows strong instruments, even if
the first stage for the other endogenous regressor suffers from weak instrument bias. Although we
are not in a homoskedastic setting, there are no other available tests in a multiple endogenous vari-
able setting (Andrews, Stock, and Sun 2019), thus these statistics can be seen as an approximation.

These caveats notwithstanding, in each specification we see that coefficients on non-rice unit
values turn negative and magnitudes and significance for low-quality rice unit values are consistent
in sign and magnitude with preceding results. Instrument strength is in the safe range for the re-
spective first stages for rice unit values, and for mango unit values, but somewhat weak for coconut
unit values. Regression based tests for exogeneity (following Wooldridge 2010) reject exogeneity
for rice unit values, but not for coconut of mango unit values (the result does not change if unin-
strumented versions of the latter two unit values are included). These findings lend further support
for our identification strategy and results.

Figure 23: District level specifications of non-ELC deforestation on instrumented mango-uvl and
wet season paddy. Specification uses shift-share instrument Z and wet season average maximum
temperature in t-1.

arcsinh(mango.uvl in t) -0.66
(0.72)

arcsinh(avg.lq.uvl in t) 5.44⇤⇤⇤

(1.87)

FEs? D
Clust. S.E.? P,D
1st stage FR mango 21
1st stage Fmango|rice 9
1st stage FR rice 11
1st stage Frice|mango 15
DWH t-stat. rice -3.69
DWH t-stat. mango 1.3
Observations 651
Adjusted R2 0.87

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

5Applicable tables are for one endogenous variable with the critical value corresponding to the total number of
instruments minus the number of first stages.
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Figure 24: District level specifications of non-ELC deforestation on instrumented coconut-uvl
and wet season paddy. Specification uses shift-share instrument Z and wet season average
maximum temperature in t-1.

arcsinh(coconut.uvl in t) -2.52⇤

(1.44)
arcsinh(avg.lq.uvl in t) 3.42⇤⇤⇤

(1.18)

FEs? D
Clust. S.E.? P,D
1st stage FR coconut 4
1st stage Fcoconut|rice 8
1st stage FR rice 7
1st stage Frice|coconut 46
DWH t-stat. rice -4.13
DWH t-stat. coconut 2.57
Observations 657
Adjusted R2 0.73

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Deforestation Robustness and Extensions: placebo test & im-
pulse response, leave-k-out & permutation tests
Figures (25) and (26) below show combined results for distributions of respective statistics of
interest based on dropping districts (i.e. the main cluster variable, which is districts in our case).
In each regression the same specification is run. Covariates include wet and dry season average
temperature and precipitation, lagged ELC deforestation t, a linear trend, district specific trends,
and a post-2008 dummy. District level fixed effects are included and standard errors are clustered
at the province and district levels. These figures focus on district-level specifications with mean
rice prices as the regressor of interest in period t, regressed on non-ELC deforestation in t + 1;
figures focused on different dependent variables or price moments can be provided upon request.
For a detailed study of these issues see Young (2019) who focuses largely on the value of such
tests to assess sensitivity to highly leveraged data in instrumental variables estimation. Also see
further discussion of the relevance of these tests in Christian and Barrett (2021) who argue for the
value of such tests in panel shift-share IV settings to assess the extent to which spurious time-series
correlations may be driving results.

In each panel within figures (25) and (26), the observed estimates from our main results are
plotted, as well as the resulting distributions of these statistics when one either: leaves-exactly-one
district out; leaves two randomly selected districts out over 5000 iterations; leaves four randomly
selected districts out over 5000 iterations. These tests easily pass criteria suggested by Young
(2019) such as the bootstrap-c test (i.e. “...the tail probability of the squared coefficient deviation
from the null hypothesis”, or, more formally, (b̂ i

out � b̂obs.)
2 > (b � 0)2) since all estimated co-

efficients of interest are positive. In all cases, statistics remain quite precisely estimated, though
commensurate with losses of degrees of freedom as more districts are dropped, imprecision in-
creases, though main results continue to hold. Results of other statistics of interest can be provided
upon request. Overall, the results presented in figures (25) and (26) do not support the hypothesis
that our results stem from our data be over-leveraged.
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Figure 25: District-level leave-several-out tests for arcsinh(mean low-quality rice unit value) in t
regressed on arcsinh(non-ELC deforestation hectares) in t +1.
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Figure 26: District-level leave-several-out tests for arcsinh(mean wet season paddy) in t
regressed on arcsinh(non-ELC deforestation hectares) in t +1.

Figures (27) and (28) below show resulting distributions for statistics of interest based on ran-
domly re-assigning the respective endogenous variable (low-quality rice unit values, or wet season
paddy in period t) within two-stage least squares estimation. As above, these figures focus on mean
rice prices in t as the regressor of interest in an instrumental variables regression with non-ELC
deforestation in period t +1 as the dependent variable. Christian and Barrett (2021) argue for the
value of such tests in panel shift-share IV research designs as part of robustness checks to guard
against spurious time series correlation contaminating estimations of interest.

In the setting focused on by Christian and Barrett (2021), the relationship of interest is the
causal effect of US food aid shipments on conflict, focusing in particular on the case of Nunn and
Qian (2014) who use a shift-share research design to address this question. Christian and Barrett
(2021) make compelling arguments that Nunn and Qian (2014), among others, are vulnerable to
being affected by spurious time-series correlations, which may lead to type I error. Christian and
Barrett (2021) make a variety of useful recommendations for panel shift-share IV research designs,
particularly for long panels, to increase transparency and elevate the rigor that such research de-
signs should undergo. We find Christian and Barrett (2021) convincing and agree on the value of
applying applicable tests, such as leave-one-out estimation and permutation tests. However, there
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are limits to which we can apply all recommended tests from Christian and Barrett (2021). More-
over, in our setting we suggest that some of their recommended tests/steps are not viable, and/or
would need to be applied with greater flexibility to more comprehensively implement the implied
test.

The caveats our study raises are as follows. First, Christian and Barrett (2021) suggest applying
tests for time series coeintegration, and, if tests come back in the affirmative, resolve the issue by
taking first differences. While this approach might be viable in long panels, such Nunn and Qian
(2014) with over 20 years of data, in comparatively short panels such as ours (6 years for low-
quality rice unit value models, 8 years for wet season paddy models), which are also imbalanced
and not uniformly contiguous in time, first differences may cause as many problems as they resolve.
In our cases, the implied complications includes serious losses to degrees of freedom, and losing
critical pre- and post- rice price shock variation. For this reason, we do not implement such tests
or differencing.

Second, while we agree with Christian and Barrett (2021) that permutation tests that systemati-
cally seek to break the causal links of interest by scrambling the endogenous variable of interest are
very important and should be more widely adopted, we suggest these tests should be approached
with some flexibility and caution. In applying a permutation test to Nunn and Qian (2014), and
in making a general recommendation to researchers, Christian and Barrett (2021) recommend ran-
domizing within respective time periods and sampling without replacement. In the setting of Nunn
and Qian (2014), this approach makes good sense, particularly because the units of observation
are countries, between which there is less likely to be pervasive spatial correlation for the endoge-
nous variable of interest (i.e. US food aid shipments to different countries, across oceans and
continents, are highly unlikely to be systematically, spatially correlated). However, for research
questions that have a narrow geographic focus, which are also focused on endogenous variables
with high cross-sectional spatial correlation, restricting randomization to be within each time pe-
riod and without replacement may not be the most appropriate test. The reason being that if the
endogenous variable within cross-section is highly spatially correlated, randomization may largely
retain very close variation to the observed, leading to very similar results overall. This might lead
one to conclude that the main findings cannot therefore be genuine, even when identification is
clean and the causal-relationship(s) of study does indeed exist. Rejecting the validity of estimation
based on such tests in applicable settings would be equivalent to a type II error: one would reject
the null that b = 0 from the second stage, but then find reason to question the validity of that test
result because it fails the permutation test.

We submit that our research presents just such a setting: prices for staple foods, particularly
within cross-section because the cross-section is contiguous in space, are likely to be highly spa-
tially correlated. Because of this, a within-year test that randomizes without replacement, may
produce findings with a randomized endogenous variable that show significant results, even com-
mensurate in magnitude and significance of the observed results. For this reason, we argue that a
wider battery or permutation tests are likely to be a wise in such settings, and that increasing the
scope of tests applied should add further rigor, and also effectively guard against un-intended type
II errors.

In particular, in the figures and panels below we present results of the following: (i) permuta-
tion tests that randomize the endogenous variable within cross-section and without replacement,
randomize within period t and t + 1 without replacement, and randomize across all time periods
without replacement; (ii) for each test, study the resulting second stage coefficients of interest,
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the first stage relationship of interest, and standard IV test statistics (e.g. Durban-Wu-Hausman
(DWH) tests, 1st stage F statistics, etc.). With this array of comparisons we can then compare
all distributions, means of distributions, and compare these results against the respective observed
statistics that are estimated from the models of interest.

Our results for this battery of tests are presented in the figures below. As before, note also that
all specifications estimated are identical with the exception of the endogenous variable, which may
be low-quality rice unit values or wet season paddy. Covariates include wet and dry season average
temperature and precipitation, lagged ELC deforestation t, a linear trend, district specific trends,
and a post-2008 dummy. Each model also includes district fixed effects and clustered standard
errors at the province and district levels.

Figure 27 shows permutation test results for specifications with low-quality unit values as the
regressor of interest in t and non-ELC deforestation as the outcome of interest in t+1, and 28 shows
the corresponding results with the same response variable when wet season paddy is the regressor
of interest. One overall result that stands out is the concern about cross-sectional spatial correlation
in rice prices. Indeed, we suggest that our results imply this is a well-founded concern in that we
can see that although most tests show estimated parameters stand out as well-outside observed
distributions, the same is not the case for low-quality unit values, at least uniformly. We suggest
that a simple explanation for this phenomena may be the overall nature of the differences between
the two rice products. In particular, since low-quality rice is a very common consumption good it
is not likely to vary substantially across the country, hence differences in price in cross-section are
more likely to be smaller. In contrast, wet season paddy is more likely to have greater variation
over space – perhaps for agro-ecological reasons, access to irrigation, production technology, plant
materials used, etc. For example, rice in regions with high quality rice, such as Battambang or
Takeo, may receive a consistently much higher price than that from, say, areas of Ratanakiri. If
this was indeed the case, then in cross-section one might expect greater spatial variation for the
respective farm gate price than that for the retail price of low-quality rice unit values.

The most clear example of how contrasting spatial correlation seems to affect these tests, is the
top left panel of each figure 27 and 28, which show estimated second stage coefficient distributions
against the corresponding estimate from the actual data. Within cross-sectional randomization, the
low-quality rice unit value distribution exhibits similar magnitudes from the observed estimate,
but is generally larger than the observed value. Wet season paddy distributions exhibit similar
properties. This may seem a problem as it may suggest that our results are spurious. However, it is
also clear that as soon as randomization is allowed to extend into t and t+1, the relationship breaks
as shown by the imprecise underlying density in blue within the top left panel of both figures,
particularly for wet season paddy. Moreover, as can be gleaned from the other panels within each
figure, there are plenty of other results that lend confidence in accepting our results: significance
of either instrumented rice price in the second stage drops (top right panel in each figure); the
instrument becomes steadily less significant to insignificant in the first stage (center-left panel);
the instrument becomes substantially weaker and very imprecisely estimated (center-right panel);
and, the observed DWH statistic in randomized distributions is quite precisely centered over zero,
even within cross-sectional randomization.

In combination, we suggest that cross-sectional spatial correlation is the driver behind some of
the less-convincing permutation tests shown in these figures, but that the additional results – even
within cross-sectional randomization – broadly do not support the notion that our results are driven
spurious time series correlation, or some other form of spurious correlation.
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Figure 27: Permutation tests for regressions of mean acrsinh(low-quality rice unit value) in t on
arcsinh(non-ELC deforestation hectares) in t +1. Each panel shows distributions and means of
respective statistics under randomization of the endogenous variable within year and without
replacement, within year t and year t +1 without replacement, and across all years without
replacement.
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Figure 28: Permutation tests for regressions of mean acrsinh(wet season paddy) in t on
arcsinh(non-ELC deforestation hectares) in t +1. Each panel shows distributions and means of
respective statistics under randomization of the endogenous variable within year and without
replacement, within year t and year t +1 without replacement, and across all years without
replacement.
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An additional battery of district-level tests are shown in figures 29 and 30, which respectively
show placebo tests and tests for dynamic impacts beyond the base specifications that we focus
on with rice prices in t and deforestation in t + 1. Our dynamic estimation relies on the local
projections method studied by Jordà (2005), sometimes referred to as impulse response estimation.
Figure 29 shows respective tests for deforestation in non-ELC areas and figure 30 shows respective
tests for deforestation in ELC areas. The x-axis in each panel represents different leads and lags
t+ j that deforestation is set to with respect to rice price variation in t. Therefore, all lags t�3, t�2,
and t �1 are placebo tests; t is a test for contemporaneous effects (plausible, but less likely); t +1
is our base model and t+2 up to t+6 test the extent to which further dynamic land use impacts are
present from the rice price shock beyond those measured at t +1. For these figures, specifications
differ mainly by whether or not the first or second moment of rice prices is at focus. For all
specifications focused on mean prices, every specification has a linear trend, district trend, wet and
dry season weather covariates in t, a lag of ELC deforestation in t (for non-ELC specifications),
a post-2008 dummy, district level fixed effects, and clustered standard errors at the province and
district levels. For all specifications focused on the standard deviation of prices, specifications
differ slightly, given the weak IV issues that arise with seasonal weather covariates, and include a
linear trend, district trend, a lag of ELC deforestation in t (for non-ELC specifications), and annual
weather covariates in t.

An important first finding to note is that the vast majority of the placebo tests are not signif-
icant at any level, and sign is inconsistent. A few instances of significance do arise in placebo
tests, though mostly for specifications focused on standard deviation and ELC-based deforestation
(a couple models focused on mean wet season paddy and ELC-deforestation are also marginally
significant in placebo test). Some spurious correlation is not surprising owing to serial correlation.
Another important finding is that contemporaneous coefficient estimates are positive, generally
smaller than respective t +1 coefficients, and inconsistently significant. Moving to our base spec-
ifications, we see further confirmation of our deforestation results. For non-ELC areas we see
positive and large elasticities that are highly significant for mean rice prices, and much smaller
but still positive and significant for our measure of price variance (standard deviation). For ELC
areas, the story for our baseline model is similar, but magnitudes of point estimates are approxi-
mately half of the magnitude of the non-ELC focused point estimates, and statistical significance
is somewhat weaker.

Tests for the presence of further dynamic impacts beyond those observed on average for the
t +1 period are largely insignificant and inconsistent in sign. However, there is a clear trend in the
point estimates and a distinct difference in arc of non-ELC versus ELC-focused dynamic tests. For
non-ELC focused tests, results are negative and insignificant for t + 2, but then become positive
through t + 3 and t + 4, and even showing some significant at t + 4, after which point estimates
largely turn negative and insignificant. For ELC-focused tests, point estimates are positive at t and
stay relatively stable with some notable significance between t +1 and t +4 and then decline and
become negative and insignificant.

Overall, these further tests easily pass placebo tests for the most part and our primary results
are confirmed. We also find some evidence for extended impacts up to 4 years after the rice price
shock, though the evidence is not as statistically significant.
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Figure 29: District-level placebo and dynamic effect tests on non-ELC-based deforestation. The
y-axis represents point estimates and confidence intervals for second stage coefficients of our rice
price variables of interest, where m1 refers to the mean of the respective rice price variable, and
m2 refers to the variance, which we convert to standard deviation. The x-axis captures different
leads and lags t + j that arcsinh(non-ELC deforestation in hectares) is set to rice price variation in
t. Our base model sets deforestation to t +1; deforestation in t is less likely to be responsive to
rice prices in t, but it is plausible. Lags of t �1, t �2, and t �3 represent different placebo tests
(i.e. it is not possible for future prices to affect past deforestation). Leads from t +2 to t +6 test
the extent to which the effects of the rice price shock measured in our base model extend beyond
t +1.
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Figure 30: District-level placebo and dynamic effect tests on ELC-based deforestation. The
y-axis represents point estimates and confidence intervals for second stage coefficients of our rice
price variables of interest, where m1 refers to the mean of the respective rice price variable, and
m2 refers to the variance, which we convert to standard deviation. The x-axis captures different
leads and lags t + j that arcsinh(ELC deforestation in hectares) is set to rice price variation in t.
Our base model sets deforestation to t +1; deforestation in t is less likely to be responsive to rice
prices in t, but it is plausible. Lags of t �1, t �2, and t �3 represent different placebo tests (i.e. it
is not possible for future prices to affect past deforestation). Leads from t +2 to t +6 test the
extent to which the effects of the rice price shock measured in our base model extend beyond
t +1.
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Figure 31: Point estimates of commune-level shift-share variable Z in t regressed on household-level area-shares in t +1. Wet and dry
season allocations in rice, cash crops, and their sum (Tw and Td) are the dependent variables in the top six panels; total rice and cash
crops shares seasons, Tdw, is the dependent variable in the bottom panel. All models include linear trends, commune-specific trends, a
parsimonious set of household controls (see footnote in the main text), and cumulative district-level deforestation (ELC and non-ELC)
over t to t �1. Seasonal weather controls in t and fixed effects and clusters for standard errors are denoted in abbreviations in the bottom
table: wet season (ws), dry season (ds), annual (yr), wet and dry season (ds-ws), commune (c), district (d), province (p), year (y).
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Figure 32: Point estimates of commune-level shift-share variable Z in t +1 regressed on household-level area-shares in t +1. Wet and
dry season allocations in rice, cash crops, and their sum (Tw and Td) are the dependent variables in the top six panels; total rice and cash
crops shares seasons, Tdw, is the dependent variable in the bottom panel. All models include linear trends, commune-specific trends, a
parsimonious set of household controls (see footnote in the main text), and cumulative district-level deforestation (ELC and non-ELC)
over t to t �1. Seasonal weather controls in t and fixed effects and clusters for standard errors are denoted in abbreviations in the bottom
table: wet season (ws), dry season (ds), annual (yr), wet and dry season (ds-ws), commune (c), district (d), province (p), year (y).

53



Figure 33: Point estimates of cumulative district-level non-ELC deforestation (hectares) in t �1 regressed on household-level
area-shares in t +1. Wet and dry season allocations in rice, cash crops, and their sum (Tw and Td) are the dependent variables in the top
six panels; total rice and cash crops shares seasons, Tdw, is the dependent variable in the bottom panel. All models include linear trends,
commune-specific trends, a small set of household controls (see footnote in the main text), cumulative district-level ELC deforestation
over t to t �1, and shift-share variable Z in t +1. Seasonal weather controls in t and fixed effects and clusters for standard errors are
denoted in abbreviations in the bottom table: wet season (ws), dry season (ds), annual (yr), wet and dry season (ds-ws), commune (c),
district (d), province (p), year (y).
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Figure 34: Point estimates of cumulative district-level ELC deforestation (hectares) over t to t �1 regressed on household-level
area-shares in t +1. Wet and dry season allocations in rice, cash crops, and their sum (Tw and Td) are the dependent variables in the top
six panels; total rice and cash crops shares seasons, Tdw, is the dependent variable in the bottom panel. All models include linear trends,
commune-specific trends, a small set of household controls (see footnote in the main text), cumulative district-level non-ELC
deforestation in t �1, and shift-share variable Z in t +1. Seasonal weather controls in t and fixed effects and clusters for standard errors
are denoted in the bottom table: wet season (ws), dry season (ds), annual (yr), wet and dry season (ds-ws), commune (c), district (d),
province (p), year (y).
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Figure 35: Sample household-level reduced-form regressions.

ws-rice ws-cc Tw ds-rice ds-cc Td Tdw
linear trend 0.003 -0.0005 0.002 0.002 0.001 0.003 0.0003

(0.005) (0.004) (0.003) (0.01) (0.01) (0.01) (0.005)
commune trends 0.0000 -0.0000 0.00 0.0000 0.00 0.0000 0.00

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
post-2008 dummy 0.04⇤ 0.005 0.05⇤⇤⇤ -0.05 0.04 -0.01 0.07⇤⇤⇤

(0.02) (0.01) (0.02) (0.04) (0.04) (0.04) (0.02)
household (hh) size -0.003⇤⇤⇤ 0.0005 -0.003⇤⇤⇤ -0.003 -0.01⇤⇤⇤ -0.01⇤⇤⇤ -0.001

(0.001) (0.001) (0.001) (0.002) (0.001) (0.002) (0.001)
male share hh. > 15 yrs. -0.02⇤ -0.01 -0.03⇤⇤⇤ 0.06⇤⇤⇤ -0.01 0.05⇤⇤ -0.02⇤

(0.01) (0.01) (0.01) (0.02) (0.02) (0.02) (0.01)
dummy female head-hh. -0.01 0.002 -0.01 -0.03⇤⇤⇤ 0.04⇤⇤⇤ 0.01 -0.003

(0.01) (0.005) (0.004) (0.01) (0.01) (0.01) (0.01)
yrs. educ. head-hh -0.002⇤⇤ 0.001⇤ -0.001 -0.003⇤⇤ 0.003⇤⇤⇤ -0.0000 0.0000

(0.001) (0.001) (0.0005) (0.001) (0.001) (0.001) (0.001)
num. plots irgtd. rice 0.001 -0.02⇤⇤⇤ -0.02⇤⇤⇤ 0.02⇤⇤ -0.04⇤⇤⇤ -0.02⇤⇤⇤ -0.01⇤⇤⇤

(0.004) (0.003) (0.003) (0.01) (0.01) (0.005) (0.002)
dis.lvl.no-ELC deforestation t �1 -0.0000⇤ 0.0000⇤ 0.0000 -0.0000 0.0000⇤⇤⇤ 0.0000⇤⇤ 0.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
dis.lvl.ELC deforestation t �1 0.0000 -0.0000 0.0000 -0.0000 -0.0000⇤⇤⇤ -0.0000⇤⇤⇤ 0.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Zt+1 -0.0004⇤⇤⇤ 0.0001 -0.0004⇤⇤⇤ 0.0003 -0.0005⇤⇤ -0.0002 -0.0003⇤⇤⇤

(0.0001) (0.0001) (0.0001) (0.0002) (0.0002) (0.0003) (0.0001)
avg. com.level ws-tavg. (c) in t -0.04 0.01 -0.03 0.08 -0.10⇤⇤ -0.03 -0.004

(0.03) (0.02) (0.02) (0.05) (0.04) (0.06) (0.03)
avg. com.level ws-rainfall (mm) in t 0.0000 -0.0001 -0.0001 0.0001 -0.0002 -0.0001 -0.0001

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0002) (0.0001)
avg. com.level ds-tavg. (c) in t 0.01 0.002 0.01 -0.05⇤ 0.06⇤⇤ 0.01 0.01

(0.01) (0.01) (0.01) (0.03) (0.03) (0.03) (0.02)
avg. com.level ds-rainfall (mm) in t -0.0005 0.0003 -0.0001 -0.0004 -0.0004 -0.001⇤ -0.0001

(0.0003) (0.0003) (0.0003) (0.001) (0.0004) (0.0004) (0.0003)

FEs? C C C C C C C
Clust. SEs? CD CD CD CD CD CD CD
Observations 19,699 19,604 19,597 6,586 6,534 6,542 21,999
Adjusted R2 0.47 0.45 0.25 0.65 0.54 0.45 0.14

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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